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Cutoff Spaces of Elliptical Gyromagnetic Planar
Circuits and Waveguides Using Finite Elements

JOSEPH HELSZAJN, SENIOR MEMBER, IEEE, AND ANDREW A. P. GIBSON

Abstract —The finite element method is admirably suited for the anafy-

sis of irregular planar circuits on gyromagnetic substrates. It is used in this

paper to evahsate the cutoff spaces of eli!ptical magnetized planar circuits

with electric and magnetic walls in afl combinations. A knowledge of the

four possible solutions and a knowledge of the rules governing the inter-

sections of cutoff branches in qe cutoff spaces We sufficient for a

complete description of the related elfipti~ gyromagnetic waveguide with

either an electric or a magnetic wall. ,It is also demonstrated that the

demagnetized and split cutoff numbers of the’ resonator with magnetic

sidewall and top and bottom electric waffs are sufficient for the approxi-

mate description of the split phase consttits of the dominant mode in the

related weakly magnetized gyromagnetic waveguide problem with eitner a

m~etic or an electric wall.

I. INTRODUCTION

T HE MODE nomenclature of any waveguide problem

in the cutoff space is a prerequisite to understanding

the propagating region. One waveguide for which the

cutoff space has been fully described is the simple gyro-

magnetic circular waveguide [1]–[3]. A property of this

type of waveguide is that a single branch in the cutoff

space need not belong to a single mode over its full

interval [4]–[8]. If the only interest is the mode nomencla-

ture of the cutoff space, then the complication of having to

derive the characteristic equation under propagation con-

ditions may be replaced by the more simple task of evalu-

ating the planar circuits obtained by terminating the two

ends of the waveguide by electric or magnetic walls. There

are two plan~ circuits associated with the waveguide with

an electric sidewall and two with that of a magnetic one.

This approach is employed in this paper in the study of the

cutoff space of art elliptical gyromagnetic waveguide with

either an electric or a magnetic sidewall. The rules govern-

ing the mode nomenclature at the intersections of the

cutoff branches of the two planar circuits associated with

each waveguide problem in the cutoff space have been

enunciated in the related circular waveguide problem and

are assumed to apply here also [4]–[8]. The cutoff numbers

of the four possible planar circuits are evaluated in this

paper ushg the finite element method. This method has

now been widely employed in the study of this type of

problem [9], [13]–[15], [27]. The cutoff spaces of these

planar circuits differ from the corresponding circular ones
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Fig. 1. Schematic diagrams of planar resonators with idealized electric
or magnetic walls in all combinations.

in that the usual degeneracy at the origin between the

orthogonal normal modes is removed by the eccentricity.

It is separately shown, using perturbation theory, that a

knowledge of the cutoff conditions of the related isotropic

and gyromagnetic plam+r circuits with a magnetic sidewall,

is Sufficient to describe the normal modes in the weakly

magnetized elliptical waveguide with either an electric or a

magnetic wall. The approximate propagation constants

obtained in this way are in fact in close agreement with

those of the exact result in [21]. The normal modes are

separately deduced on the ‘basis of coupled mode theory

[28]. Some measurements on elliptical plhar gyromagnetic

resonators are separately described. The elliptical gyro-

magnetic waveguide is of interest in the design of nonre-

ciprocal gyromagnetic quarter-wave plates [25].

II. CUTOFF SPACE OF PLANAR ELLIPTICAL

GYROMAGNETIC RESONATORS

The cutoff numbers of the four basic planar circuits

associated with waveguides with electric and magnetic

walls are evaluated in this paper by having recourse to the

0018-9480/89/0100-0071 $01.00 01989 IEEE
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Fig. 2

Fig. 3.

Schematic diagram of planar elliptical resonator with an ideal-
ized magnetic side well.

Segmentation of planar elliptical resonator into 15 third-order
triangular subregions.

finite element method. The four possibilities are illustrated

in Fig. l(a)–(d). Fig. 2 depicts, in more detail, the schematic

diagram of the planar elliptical resonator with electric top

and bottom walls and a magnetic sidewall. The segmenta-

tion employed in the finite element analysis is indicated in

Fig. 3. It consists of 15 triangular elements within each of

which a third-order polynomial approximation is em-

ployed [10], [11], [14]. The cutoff numbers of the first two

pairs of orthogonal modes in this type of demagnetized

elliptical resonator with a magnetic sidewall and top and

bottom electric walls have been initially computed to ver-

ify the finite element software. Fig. 4 compares this result

with the exact theory summarized in the Appendix

[18] -[20]. An important property of this resonator is that

the usual degeneracy between the orthogofial modes en-

countered in an isotropic disk resonator no longer exists.

The mode nomenclature in such a resonator is described in

terms of odd and even angular Mathieu functions Sen and

Cem respectively. If the order of the Mathieu function is

zero then only the even mode exists. If the order is other

than zero then the z component of the field patterns which

correspond to the odd solution have odd symmetry with

respect to the major axis of the resonator, whereas for the

even solutions the corresponding field patterns have even

symmetry about the major axis. Somewhat closer agree-
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Fig. 4. Exact and FEM descriptions of the cutoff numbers of the
orthogonal modes, as a function of eccentricity, in an elliptical planar
resonator with idealized magnetic side walls ( ,TMI ~, .TMII, ,TM21,
.TM21 modes).
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Fig, 5. Split cutoff numbers of planar elliptic~ gyromagnetic resonator
with magnetic sidewall and electric top and bottom wells (e= 0.60)
(eTMll, .TMII, ,TM21, .TM21 modes).

ments were obtained using 32 elements and a second-order

approximation within each.

Figs. 5, 6, 7, and 8 illustrate the cutoff numbers for the

first few modes for the four planar circuits on a gyromag-

netic substrate. The theoretical mode charts are again

derived using the finite element approach. The segmenta-
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Fig. 6. Cutoff numbers of magnetized planar elfipticaf resonator with
Fig. 8. Cutoff numbers of magnetized planar elliptical resonator with

magnetic sidewall and magnetic top and bottom walls (e= 0.60)
electric sidewall and magnetic top and bottom wafls (e= 0.60)

(,TEoI, ,’%1, ~% modes).
(,TEII, .TEII, .TE21, ~TE21,~TEol modes).

tion and polynomial approximation within each element

are the same as those employed in connection with the

related isotropic problem. The application of the finite

element method to the solution of this class of problem is

6,- noted in [13]–[15] and [27]. It is of note that the only

family of modes in a gyromagnetic resonator whose cutoff

frequencies split are those which belong to the planar

resonator with a magnetic sidewall and top and bottom
5 - electric walls. The planar circuit with electric end walls

gives the cutoff frequencies of modes which are TM at

cutoff, and the planar circuit with magnetic end walls gives

the cutoff frequencies of modes which are TE at cutoff.
4 - The physical variables appearing in these illustrations are

the radial wavenumbers along the major axis of the ellipse
~R& (kol?), the diagonal and off-diagonal elements (p and K),

3 _
respectively, of the tensor permeability, the relative dielec-

tric constant of the ferrite or garnet substrate (tf), and the

eccentricity of the resonator (e).

1 III. CUTOFF SPACE OF ELLIPTICAL

GYROMAGNETIC WAVEGUIDE

I
The cutoff space may in general be constructed for any

1
waveguide with either an electric or a magnetic sidewall

from a knowledge of the cutoff numbers of the related

planar circuits with either electric or magnetic top and

bottom walls. This will now be demonstrated in the case ofo~ the elliptical gyromagnetic waveguide with an electric or
0.6 & 10 magnetic wall illustrated in Fig. 9 by employing the planar

v

Fig. 7. Cutoff numbers of magnetized planar elliptical resonator with
solutions depicted in Figs. 5, 6, 7, and 8. Fig. 10 summa-

electnc sidewall and electric top and bottom walls (e = 0.60) ( ~TMol,
rizes the cutoff space for an elliptic waveguide with an

,TMII, .TMII modes). electric wall. Fig. 11 gives the same information for the
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Fig. 9. Schematic diagram of elliptical gyromagnetic waveguide.

magnetic wall situation. In obtaining these results, use has

been made of the rules concerning the intersections of the

cutoff numbers and mode ‘nomenclature outlined in con-

nection with the round waveguide problem [4]–[8]. The

fact that a single branch need not correspond to a single

mode over its entire iengtli is a feature in these types of

waveguide. At the croksover of the ,TEOI and ~TMOl

branches in the electric wall waveguide, the mode nomen-

clature interchanges with respect to each continuous cutoff

curve. The first intersection in “the magnetic wall case

occurs betweim the ~TMll and ~TEll modes. Similar ex-

changes in the mode nomenclature occur in the cutoff

space of the higher order modes not indicated in these

illustrations.

IV. EXPERIMENTAL MODE CHARTS

This section describes some experimental data on the

two orthogonal branches of each of the first two modes of

the planar circuit with a magnetic sidewall and top and

bottom electric ones. The odd and even modes are equally

excited with a coupling line perpendicular to either the

major or minor axes of the resonator. Fig. 12 shows a

photograph of some experimental layouts. The substrate

employed in this work cohsisted of a pure yttrium iron

garnet material with a saturation magfietization of 0.1780

T and a relative dielectric constant of 15.1. The thiclchess

of the substrate was 0.635 mm.

Fig. 13 illustrates some experimental data on the two

branches of each, of the first two modes of such a resonator

with different eccentricities on a demagnetized garnet sub-

strate. Fig. 14 displays the split cutoff numbers for the

same two pairs of modes for one value of eccentricity

(e= 0.6). These results are plotted against the external flux

density of the magnetic circuit. Since the relationship

between the internal and external direct magnetic variables

in a‘ partially magnetized magnetic geometry is not

straightforward, it is ‘possible to attempt correlation be-

tween theory and practice only at magnetic saturation of

the material. The agreement between the two is adequate

for engineering purposes. The garnet material employed is

the same as that used in the experimental work on the

isotropic circuits. Figs. 15 and 16 depict similar results but

6r

.TE1,l .TEI,7

2 / /
/

1 .

,~
0.5 & 1.0

M

(a)

(b)

for gyromagnetic substrates with values of saturation mag- Fig. 10. (a) Cutoff space of gyromagnetic waveguide with an electric

netizatioh of 0.2150 T and 0.2800 T, respectively. Similar
TE21, .TE21, ,TMm .TMmwall for the quasi- eTE1l, .TEu, ,TMo1, .

experimental data on circuits with an eccentricity equal to
and .TEOI modes (e = 0.40). (b) Cutoff space of gyromagnetic wave-
guide with an electric wall for the quasi- eTEll, OTE1l, ,TMoL, =TE2u

0.40 are omitted for brevity. .TE21, .TMII, .TMII, and .TEoI modes (e= 0.60).



HELSZAJN AND GIBSON: CUTOFF SPACES

‘r

75

5 .

4 , / \ / \

~R,q

3 .

\
eT~,l

2

0’
1

0.5
I

~ 1.0

#

(a)

I
o

i (

0.s K
i .6

(b)

Fig. 11. Cutoff space of gyromagnetic waveguide with a magnetic wall

for the quasi- eTMll, OTM1l, ,TEO1, eTM21, 0TM21, ,TE1l, ~TEll
modes (e= 0.40). (b) Cutoff space of gyromagnetic wavegnide with a
magnetic wall for the quasi- ,TMII, ~TM1l, ,TEo1, e’rMzI, 0TM21,

.TE1,, .TEII modes (e = 0.60).

Fig. 12. Photo of planar elliptical resonators on gyromagnetic sub-

strates.
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Fig. 13. Experimental frequencies of demagnetized elliptical resonator

TM21, ~TM21 modes).as a function of eccentricity ( .TMII, .TMII, .

V. PERTURBATION THEORY OF GYROMAGNETIC

CIRCULAR WAVEGUIDES WITH ELECTRIC AND

MAGNETIC WALLS

Scrutiny of the dispersion relationship of a circular

gyromagnetic waveguide with either an electric or a mag-

netic sidewall obtained using perturbation theory and the

split frequencies of the associated planar circuit with a

magnetic wall indicates that these may be approximately

derived from a knowledge of the latter quantities. A solu-

tion of the cutoff space is therefore sufficient for the

approximate formulation of the split phase constants of

the dominant modes in homogeneous gyromagnetic circu-

lar waveguides with electric or magnetic wall boundary

conditions. If this method is applied to the elliptical gyro-
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Fig. 16. Experimental split frequencies of the .TMII, OTMI1, eTMM,
and .TM21 modes of a magnetized planar elliptical resonator with

e = 0.60, c, =13.1, and &f. = 0.2800 T.

magnetic waveguide, then the cutoff conditions are all that

is necessary to describe this class of waveguide. It is of

note, however, that a single branch in the cutoff space

need not describe a single mode over its entire length.

The propagation constant of a circular waveguide with

either an electric or a magnetic wall for which the perme-

ability has the tensor form

[1P –jK o

jK p o (la)

o 0 p,

may be formed from the related problem for which it has

the diagonal form

II
/loo
Opo (lb)

oopz

using perturbation theory.

The required dispersion relationships for the first pair of

split TEII modes are then given by

(2)

for the electric wall case, and

fil = % + k;~fPCl; ; (3)

for the dominant pair of split TM, ~ modes in the magnetic-> J . --
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wall situation. The constant Cl: is deduced from the

perturbation development as [26], [30]

*2

C;= (1.84) 2-1 “
(4)

The phase constant (/3.) of the related anisotropic wave-

guide is [8]

(5)

for the TEII mode in the unperturbed circular waveguide

with an electric wall and is

(6)

for the TMII mode in the unperturbed circular waveguide

with a magnetic wall.

In these relations kO is the wavenumber (rad/m), tf is

the relative dielectric constant of the medium, and COand

PO are the usual constitutive parameters of free space.

The dispersion relationship of the first of these approxi-

mate solutions displays split phase constants but not split

cutoff numbers, in keeping with the exact result. The

dispersion relationship of the second of these solutions

displays both split cutoff numbers and phase constants,

again in keeping with the properties of the exact problem.

It is of note that the factor Cl; in the dispersion

relationships coincides with the first pair of split cutoff

numbers (kOR=) ~ ~,1 about the cutoff number at the

origin, (kORfi)l,l:

[

2 (Wm>l-(w=a,l,l SC,: (7)

1(LX&i)l,, “P
of the characteristic equation of a weakly magnetized

planar disk resonator with a magnetic wall [29]

()K ‘n(keR) co

J~(k.R)–n ~ k R
e

(8)

provided

k,R = kOR% (9)

and

~2–K2 ~ p’–(cl; fc)2
~eff –

.— (10)
P P“

Scrutiny of the approximate dispersion relationships in

this section and the exact ones using the appropriate

characteristic equations in [1]–[3] and [8] indicates that the

former descriptions are adequate for everyday engineering
provided

0<%0.5.
P

A similar development for a square waveguide gives Cl; =

VI. APPROXIMATE SPLIT PHASE CONSTANTS OF

CIRCULAR GYROMAGNETIC WAVEGUIDE USING THE

FINITE ELEMENT METHOD

The coefficients Cl; appearing both in the perturbation

formulation of the phase constants and in the description

of the weakly magnetized planar resonator assume that the

fields of the gyromagnetic waveguide are equal to those of

the isotropic waveguide. This assumption breaks down, in

each instance, for the lower of the two split branches. In

the magnetic wall case this may be understood by recog-

nizing that the fields of the exact solution are cutoff

whereas these are assumed propagating in the perturbation

formulation.

A more accurate relationship for this quantity may be

empirically constructed using the finite element approach

by investigating the condition

fl,=o (11)

in the magnetic wall problem. This gives Cl; in terms of

the cutoff frequencies (kOR@) ~ ~,1:

instead of the relationships in (4). The quantity (keR )1,1

refers to the demagnetized cutoff number of the dominant

mode.

Substituting this quantity in (12) into the equation for

~ ~ leads in the electric wall case to

and in the magnetic wall case to

These relationships are adequate for engineering purposes

in the. case of the dominant modes in the range

Figs. 17 and 18 compare the accuracy of this approxima-

tion to that of perturbation theory for both the electric and

magnetic wzdl waveguides.

VII. APPROXIMATE SPLIT PHASE CONSTANTS OF

ELLIPTICAL GYROMAGNETIC WAVEGUIDE USING
FINITE ELEMENTS

If the relationship between the first dominant elliptically

polarized split phase constants and cutoff numbers is

extended to the elliptical waveguide shown in Fig. 9, then

the solution of the planar circuit described here provides

& 0.81 [28]. an approximate solution to the elliptical waveguide also.
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Fig. 19. Split phase constants of elliptical gyromagnetic waveguide with

formulations of the split phase constants of the circular gyromagnetic
an electric wall using exact, approximate normal mode, and coupled

waveguide with an electric wall (TEII mode: k. R = 0.9, (f =15, # = p=
mode theory (eTEll and ~TEll modes: e = 0.648, Cf = 10, k. R =

=1). 0.9696).
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Fig. 18. Comparison of the exact, perturbation and approximation for-

mulations of the split phase constants of the circular gyromagnetic
waveguide with a ‘magnetic wall (TMII mode: kOR =“0.6, Ef-= N

p=p==l).

An exact solution to the elliptical gyromagnetic waveguide

with an electric wall is available in the literature [21], and

this gives an opportunity to test this assumption. Specializ-

ing equation (13) for this problem gives

where

2=IFT3T3‘1’)
The corresponding approximation for the magnetic wall

waveguide with the aid of (14) is written as

In the preceding equations (k, R),,O refers to the roots of

the demagnetized circuit and (kORfi) ~,~ are the appro-

priate values at ~/p. Figs. 19 and 20 compare the exact

and approximate results for two typical arrangements.

Scrutiny of these illustrations indicates that this approxi-

mation appears to be valid for the interval

0 <%.0.
l-t

If the elliptical waveguide is excited simultaneously by
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Fig. 20. Split phase constants of elliptical gyromagnetic waveguide wi~
an electric wall using exact and approximate normaf mode and coupled
mode theory (~TEll and ~TEll modes: e = 0.887, <f= 10, kOR = 1.24).

both normal modes then the ensuing elliptically polarized

wave will exhibit the classic Faraday rotation effect, as is

well understood. The possibility of constructing quarter-

wave plates using this waveguide is noted [25], [28].

VIII. COUPLED WAVE THEORY OF THE NORMAL MODES

Coupled waveguide problems are best discussed in terms

of coupled modes and normal modes. If the degeneracy

between either polarization is somehow removed, as in a

ferrite medium, then the variables whose degeneracy is

removed are known as the normal modes of the stricture

and the other variables are known as the coupled ones.

The coupled modes, in this instance, are the orthogonal

odd- and even-mode solutions of the problem. The polar-

izations of the normal modes reduce to those of the two

counterrotating elliptical polarizations of the demagnetized

waveguide. The coupled mode description may be summa-

rized by

It is of note that the phase constants of the normal modes

are degenerate to those of the orthogonal or coupled ones.

It is readily demonstrated that the coupling coefficient (k)

in an infinite medium is given by [28].

In the waveguide problem considered here it is empirically

constructed in terms of the phase constants of the two

coupled modes and the arbitrary constant Cl; encountered

in connection with the approximate normal mode problem,

on the basis of a good fit with the exact result as

‘pe+& 2

()k=Clf —
2 ‘“

(20)

The result obtained in this manner is superimposed on

Figs. 19 and 20.

IX. CONCLUSIONS

The finite element method has been employed to calcu-

late the cutoff numbers of a planar gyromagnetic resonator

with electric and magnetic walls in all combination;. The

solutions to these four problems are all that is necessary to

fully describe the cutoff space of the related elliptical

waveguide with either an electric or a magnetic wall.

Approximate formulations of the split phase constants of

these types of gyromagnetic waveguides we also derived.

The solution associated with the electric wall problem is in

keeping with that of the exact problem.

APPENDIX

The exact solution to the isotropic elliptical planar res-

onator with top and bottom electric walls and a magnetic

sidewall is given below in terms of the derivatives (Cc;, Se~)

of odd and even radial Mathieu functions of the first kind

(Cem, SeJ [19], [20], [22]-[24]:

C%(4’0,41=0 for even modes (Al)

Se; (.$o, q) =0 for odd modes. (A2)

The quantity $’0 defines the boundary of the resonator and

is related to the eccentricity e by

()~o=cosh-l ;

and q is given by

1
q = ~e2u2poprcoc,R2.

(A3a)

(A3b)

R is the radius along the major axis of the circuit and the

other quantities have the usual meaning.
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