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Cutoff Spaces of Elliptical Gyromagnetic Planar
Circuits and Waveguides Using Finite Elements

JOSEPH HELSZAJN, SENIOR MEMBER, IEEE, AND ANDREW A. P. GIBSON

Abstract —The finite element method is admirably suited for the analy-
sis of irregular planar circuits on gyromagnetic substrates. It is used in this
paper to evaluate the cutoff spaces of elliptical magnetized planar circuits
with electric and magnetic walls in all combinations. A knowledge of the
four possible solutions and a knowledge of the rules governing the inter-
sections of cutoff branches in the cutoff spaces are sufficient for a
complete description of the related elliptica] gyromagnetic waveguide with
either an electric or a magnetic wall. It is also demonstrated that the
demagnetized and split cutoff numbers of the resonator with magnetic
sidewall and top and bottom electric walls are sufficient for the approxi-
mate description of the split phase constants of the dominant mode in the
related weakly magnetized gyromagnetic waveguide problem with eitner a
magnetic or an electric wall. '

1. INTRODUCTION

HE MODE nomenclature of any waveguide problem

in the cutoff space is a prerequisite to understanding
the propagating region. One waveguide for which the
cutoff space has been fully described is the simple gyro-
magnetic circular waveguide [1]-[3]. A property of this
type of waveguide is that a single branch in the cutoff
space need not belong to a single mode over its full
interval [4]—[8). If the only interest is the mode nomencla-
ture of the cutoff space, then the complication of having to
derive the characteristic equation under propagation con-
ditions may be replaced by the more simple task of evaly-
ating the planar circuits obtained by terminating the two
ends of the waveguide by electric or magnetic walls. There
are two planar circuits associated with the waveguide with
an electric sidewall and two with that of a magnetic one.
This approach is employed in this paper in the study of the
cutoff space of an elliptical gyromagnetic waveguide with
either an electric or a magnetic sidewall. The rules govern-
ing the mode nomenclature at the intersections of the
cutoff branches of the two planar circuits associated with
each waveguide problem in the cutoff space have been
enunciated in the related circular waveguide problem and
are assumed to apply here also [4]-[8]. The cutoff numbers
of the four possible planar circuits are evaluated in this
paper using the finite element method. This method has
now been widely employed in the study of this type of
problem [9], [13]-[15], [27]. The cutoff spaces of these
planar circuits differ from the corresponding circular ones
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Fig. 1. Schematic diagrams of planar resonators with idealized electric

or magnetic walls in all combinations.

in that the usual degeneracy at the origin between the
orthogonal normal modes is removed by the eccentricity.

It is separately shown, using perturbation theory, that a
knowledge of the cutoff conditions of the related isotropic
and gyromagnetic planar circuits with a magnetic sidewall,
is sufficient to describe the normal modes in the weakly
magnetized elliptical waveguide with either an electric or a
magnetic wall. The approximate propagation constants
obtained in this way are in fact in close agreement with
those of the exact result in [21]. The normal modes are
separately deduced on the basis of coupled mode theory
[28]. Some measurements on elliptical planar gyromagnetic
resonators are separately described. The elliptical gyro-
magnetic waveguide is of interest in the design of nonre-
ciprocal gyromagnetic quarter-wave plates [25].

II.  CuUTO¥FF SPACE OF PLANAR ELLIPTICAL
GYROMAGNETIC RESONATORS.
The cutoff numbers of the four basic planar circuits

associated with waveguides with electric and magnetic
walls are evaluated in this paper by having recourse to the
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Fig. 2. Schematic diagram of planar elliptical resonator with an ideal-
ized magnetic side wall.

Fig. 3. Segmentation of planar elliptical resonator into 15 third-order
triangular subregions.

finite element method. The four possibilities are illustrated
in Fig. 1(a)—(d). Fig. 2 depicts, in more detail, the schematic
diagram of the planar elliptical resonator with electric top
and bottom walls and a magnetic sidewall. The segmenta-
tion employed in the finite element analysis is indicated in
Fig. 3. It consists of 15 triangular elements within each of
which a third-order polynomial approximation is em-
ployed [10], [11], [14]. The cutoff numbers of the first two
pairs of orthogonal modes in this type of demagnetized
elliptical resonator with a magnetic sidewall and top and
bottom electric walls have been initially computed to ver-
ify the finite element software. Fig. 4 compares this result
with the exact theory summarized in the Appendix
[18]-{20]. An important property of this resonator is that
the usual degeneracy between the orthogonal modes en-
countered in an isotropic disk resonator no longer exists.
The mode nomenclature in such a resonator is described in
terms of odd and even angular Mathieu functions Se, and
Ce, respectively. If the order of the Mathieu function is
zero then only the even mode exists. If the order is other
than zero then the z component of the field patterns which
“correspond to the odd solution have odd symmetry with
respect to the major axis of the resonator, whereas for the
even solutions the corresponding field patterns have even
symmetry about the major axis. Somewhat closer agree-
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Fig. 4. Exact and FEM descriptions of the cutoff numbers of the
orthogonal modes, as a function of eccentricity, in an elliptical planar
resonator with idealized magnetic side walls (,TM;;, TM;;, TM,;,
+IM,; modes).
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Fig. 5. Split cutoff numbers of planar elliptical gyromagnetic resonator
with magnetic sidewall and electric top and bottom walls (e = 0.60)
(TMyy, ,IMyy, ,TM,y, ,TMy; modes).

ments were obtained using 32 elements and a second-order
approximation within each.

Figs. 5, 6, 7, and 8 illustrate the cutoff numbers for the
first few modes for the four planar circuits on a gyromag-
netic substrate. The theoretical mode charts are again
derived using the finite element approach. The segmienta-
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Fig. 6. Cutoff numbers of magnetized planar elliptical resonator with
magnetic sidewall and magnetic top and bottom walls (e=0.60)
(.TEy,, [TE,;, ,TE,; modes).

i 1 1 " " n J

0.5 K 10

m

Fig. 7. Cutoff numbers of magnetized planar elliptical resonator with
electric sidewall and electric top and bottom walls (e = 0.60) (,TM,,
JIM;,, ,TM;; modes).
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Fig. 8. Cutoff numbers of magnetized planar elliptical resonator with
electric sidewall and magnetic top and bottom walls (e=20.60)
(.TEyy, oTEqy, JTEy, ;TEsy, TEg modes).

tion and polynomial approximation within each element
are the same as those employed in connection with the
related isotropic problem. The application of the finite
element method to the solution of this class of problem is
noted in [13]-[15] and [27]. It is of note that the only
family of modes in a gyromagnetic resonator whose cutoff
frequencies split are those which belong to the planar
resonator with a magnetic sidewall and top and bottom
electric walls. The planar circuit with electric end walls
gives the cutoff frequencies of modes which are TM at
cutoff, and the planar circuit with magnetic end walls gives
the cutoff frequencies of modes which are TE at cutoff.
The physical variables appearing in these illustrations are
the radial wavenumbers along the major axis of the ellipse
(koR), the diagonal and off-diagonal elements (p and k),
respectively, of the tensor permeability, the relative dielec-
tric constant of the ferrite or garnet substrate (¢,), and the
eccentricity of the resonator (e).

III. CUTOFF SPACE OF ELLIPTICAL

GYROMAGNETIC WAVEGUIDE

The cutoff space may in general be constructed for any
waveguide with either an electric or a magnetic sidewall
from a knowledge of the cutoff numbers of the related
planar circuits with either electric or magnetic top and
bottom walls. This will now be demonstrated in the case of
the elliptical gyromagnetic waveguide with an electric or
magnetic wall illustrated in Fig. 9 by employing the planar
solutions depicted in Figs. 5, 6, 7, and 8. Fig. 10 summa-
rizes the cutoff space for an elliptic waveguide with an
electric wall. Fig. 11 gives the same information for the
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Fig. 9. Schematic diagram of elliptical gy'romaghetic waveguide.

magnetic wall 51tuat1on In obtalmng these results, use has
been made of the rules concerning the intersections of the
cutoff numbers and mode nomenclature outlined in con-
nection with the round waveguide problem [4]-[8]. The
fact that a single branch need not correspond to a single
mode over its entire length is a feature in these types of
waveguide. At the crossover of the TE, and JTM,;
branches in the electric wall waveguide, the mode nomen-
clature interchanges with respect to each continuous cutoff
curve. The first intersection in ‘the magnetic wall case
occurs between the JM,, and [TE, 11 modes. Similar ex-
changes i the mode nomenclature occur- in the cutoff
space of the higher order modes not indicated in these
111ustratlons

1V. EXPERIMENTAL MODE CHARTS

This section describes some-expenmental data on the
two orthogonal branches of each of the firSt‘ two modes of
the planar circuit with a magnetic sidewall and top and
bottom electric ones. Thé odd and even modes are equally
excited with a coupling line perpendlcular to either the
major or minor axes of the resonator. Fig. 12 shows a
photograph of some experimental layouts. The substrate
‘erployed in this work consisted of a pure. yttrium iron
garnet material with a saturation magnetization of 0.1780
T and a relative dielectric constant of 15.1. The thickness
of the substrate was 0.635 mm.

Fig: 13 illustrates some experimental data on the two
branches of each of the first two modes of such a resonator
with different eccentricities on a demagnetlzed garnet sub-

strate. Fig. 14 displays the split cutoff numbers for the
same two paits of modes for one value of eccentricity
(e = 0.6). These results are plotted agamst the external flux
density. of the magnetic circuit. Since the relationship
between the internal and external direct magnetic variables
in a partially - magnetlzed magnetic geometry is 1ot
straightforward, it is possible to attempt correlation be-
tween: theory and practice only at magnetic saturation of
the material. The agreement between the two is adequate
for englneermg purposes The garnet material employed is
the same as that used in the experimental work on the
isotropic circuits. Figs. 15 and 16 depict similar results but
for gyromagnetic substrates with values of saturation mag-
netization of 0.2150 T and 0.2800 T, tespectively. Similar

~ experimental data on circuits with an eccentricity equal to
0.40 are omitted for brevity.
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Flg 10. (@ Cutoff space of gyromagnetic wavegmde Wlth an clectric
wall for the quasi- TEyy, ;TEy;, JTMgi, JTEy, JTEy, JTMyy, ;IMyy,
and ,TEy; modes (e=0. 40) (b) Cutoff space of gyromagnetic wave-
guide with an electric wall for the quasi- TE;, ,TEy;, JTMgi, [TEy,
JE,;, My, My, and TEj; modes (e = 0.60).
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Fig. 11. Cutoff space of gyromagnetic wavegnide with a magnetic wall
for the quasi- TMy;, [TMy,, TEy, [JTMy, ,IMy, TE;;, ,TE;
modes (e = 0.40). (b) Cutoff space of gyromagnetic waveguide with a
magnetic wall for the quasi- TMy;, ,TM;,, TEy, TM,, JIM,,
JE,;;, ,TE;; modes (e = 0.60).
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planar elliptical resonators on gyromagnetic sub-
strates. '
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Fig. 13. Experimental frequencies of demagnetized elliptical resonator
as a function of eccentricity (,TM;, ,TMy;,  TM,;, . TM,; modes).

V. PERTURBATION THEORY OF GYROMAGNETIC
CIRCULAR WAVEGUIDES WITH ELECTRIC AND
MAGNETIC WALLS

Scrutiny of the dispersion relationship of a circular
gyromagnetic waveguide with either an electric or a mag-
netic sidewall obtained using perturbation theory and the -
split frequencies of the associated planar circuit with a
magnetic wall indicates that these may be approximately
derived from a knowledge of the latter quantities. A solu-
tion of the cutoff space is therefore sufficient for the
approximate formulation of the split phase constants of
the dominant modes in homogeneous gyromagnetic circu-
lar waveguides with electric or magnetic wall boundary
conditions. If this method is applied to the elliptical gyro-
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Fig. 14. Experimental split frequencies of the ,TM;;, ,TMy;, ,TM,,,
and ,TM,; modes of a magnetized planar elliptical resonator with
e=10.60, ¢, =15.1, and M,=0.1800 T.
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Fig. 15. Experimental split frequencies of the TM;;, ,TMy, [ TM;,
and ,TM,, modes of a magnetized planar elliptical resonator with
e=0.60, ¢, =127, and M, =02150 T.
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Fig. 16. Experimental split frequencies of the TMp;, ,TMy, JTM,,
and ,TM,, modes of a magnetized planar elliptical resonator with
e=0.60, ¢, =13.1, and M, =0.2800 T.

magnetic waveguide, then the cutoff conditions are all that
is necessary to describe this class of waveguide. It is of
note, however, that a single branch in the cutoff space
need not describe a single mode over its entire length.

The propagation constant of a circular waveguide with
either an electric or a magnetic wall for which the perme-
ability has the tensor form

poo—Jjc 0
kB 0 (1a)
0 0

may be formed from the related problem for which it has
the diagonal form

0
0 (1b)

S O
O Fr O
=

z

using perturbation theory.
The required dispersion relationships for the first pair of
split TE{; modes are then given by

2 2 K
Bizﬁo(HCﬁ—) )
o
for the electric wall case, and

(3)

for the dominant pair of split TM;; modes in the magnetic

K
.BzJ_r ~B+ kgef,qu{ ;
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wall situation. The constant C;F is deduced from the
perturbation development as [26], [30]
Cci=— (4)
(184217
The phase constant (S;) of the related anisotropic wave-
guide is [8]

1.84\*
A e )

R
for the TE;; mode in the unperturbed circular waveguide
with an electric wall and is

B2 =K% ~(5§f)2 ©
o o fp' R

for the TM,, mode in the unperturbed circular waveguide
with a magnetic wall.

In these relations k, is the wavenumber (rad/m), €, is
the relative dielectric constant of the medium, and ¢, and
B, are the usual constitutive parameters of free space.

The dispersion relationship of the first of these approxi-
mate solutions displays split phase constants but not split
cutoff numbers, in keeping with the exact result. The
dispersion relationship of the second of these solutions
displays both split cutoff numbers and phase constants,
again in keeping with the properties of the exact problem.

It is of note that the factor C;3 in the dispersion
relationships coincides with the first pair of split cutoff
numbers (k, R/ o) .11 about the cutoff number at the

origin, (k,Ryfep)y 1:
(k"R ef‘u)1,1_—(k"R ef‘ueff)il,l
(k"R ef'u)l,l

of the characteristic equation of a weakly magnetized
planar disk resonator with a magnetic wall [29]

(kR k\J (k.R) 0

ik
=Cg—

(7

(8)

provided
keR = koR Efp'eff

)
and

2
e (G
eff b M

Scrutiny of the approximate dispersion relationships in
this section and the exact ones using the appropriate
characteristic equations in [1]-[3] and [8] indicates that the
former descriptions are adequate for everyday engineering
provided

(10)

K
0<~x<0.5.
i

A similar development for a square waveguide gives C;f =
+0.81 [28].
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VI. APPROXIMATE SPLIT PHASE CONSTANTS OF
CIRCULAR GYROMAGNETIC WAVEGUIDE USING THE
FINITE ELEMENT METHOD

The coefficients C;; appearing both in the perturbation
formulation of the phase constants and'in the description
of the weakly magnetized planar resonator assume that the
fields of the gyromagnetic waveguide are equal to those of
the isotropic waveguide. This assumption breaks down, in
each instance, for the lower of the two split branches. In
the magnetic wall case this may be understood by recog-
nizing that the fields of the exact solution are cutoff
whereas these are assumed propagating in the perturbation
formulation.

A more accurate relationship for this quantity may be
empirically constructed using the finite element approach
by investigating the condition

.34: =0 (11)‘

in the magnetic wall problem. This gives C;# in terms of
the cutoff frequencies (koR‘/e ) L1t

K kR 2
kgefu(ucg;)—(i%) =0 (12)

instead of the relationships in (4). The quantity (k,R), ,
refers to the demagnetized cutoff number of the dominant
mode.

Substituting this quantity in (12) into the equation for
B . leads in the electric wall case to

o
oY Eslh IR
and in the magnetic wall case to

2 2
B ][tk “_( (kR
k, (koR efp.)il’l ! k,R

These relationships are adequate for engineering purposes
in the case of the dominant modes in the range
K
0<—x<1.
p

Figs. 17 and 18 compare the accuracy of this approxima-
tion to that of perturbation theory for both the electric and
magnetic wall waveguides.

VII. APPROXIMATE SPLIT PHASE CONSTANTS OF
ELLIPTICAL GYROMAGNETIC WAVEGUIDE USING
FIntTE ELEMENTS

If the relationship between the first dominant elliptically
polarized split phase constants and cutoff numbers is
extended to the elliptical waveguide shown in Fig. 9, then
the solution of the planar circuit described here provides
an approximate solution to the elliptical waveguide also.
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Fig. 17. Comparison of the exact, perturbation, and approximation
formulations of the split phase constants of the circular gyromagnetic
waveguide with an electric wall (TE;; mode: k,R=0.9, ¢, =15, p=p,
=1).
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Fig. 18. Comparison of the exact, perturbation and approximation for-
mulations of the split phase constants of the circular gyromagnetic
waveguide with a magnetic wall (TM;; mode: k,R=0.6, ¢ =15,
p=p =1).
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Fig. 19. Split phase constants of elliptical gyromagnetic waveguide with
an electric wall using exact, approximate normal mode, and coupled
mode theory (TE); and ,TE;; modes: e=0.648, ¢, =10, k,R=
0.9696).

An exact solution to the elliptical gyromagnetic waveguide
with an electric wall is available in the literature [21], and
this gives an opportunity to test this assumption. Specializ-
ing equation (13) for this problem gives

k_R
i_i= ( e )e,o B]:,o (15)
0 (koR ef,u)e,o o
where
Be,o (keR)e,o ? ®
el LU el [ o

The corresponding approximation for the magnetic wall
waveguide with the aid of (14) is written as

2
Ei= (keR)e,o ¢ —l:(keR)e,o]z (17)
k, (koR (fp.) * kR ’

In the preceding equations (k,R), , refers to the roots of
the demagnetized circuit and (koR\/efTL )e,o are the appro-
priate values at «/u. Figs. 19 and 20 compare the exact
and approximate results for two typical arrangements.
Scrutiny of these illustrations indicates that this approxi-
mation appears to be valid for the interval

K
0<—x1.0.
N

If the elliptical waveguide is excited simultaneously by
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Fig. 20. Split phase constants of elliptical gyromagnetic waveguide with
an electric wall using exact and approximate normal mode and coupled
mode theory (,TE; and ,TE;; modes: e =0.887, ¢, =10, k,R =1.24).

both normal modes then the ensuing elliptically polarized
wave will exhibit the classic Faraday rotation effect, as is
well understood. The possibility of constructing quarter-
wave plates using this waveguide is noted [25], [28].

VIIL

Coupled waveguide problems are best discussed in terms
of coupled modes and normal modes. If the degeneracy
between either polarization is somehow removed, as in a
ferrite medium, then the variables whose degeneracy is
removed are known as the normal modes of the structure
and the other variables are known as the coupled ones.
The coupled modes, in this instance, are the orthogonal
odd- and even-mode solutions of the problem. The polar-
izations of the normal modes reduce to those of the two
counterrotating elliptical polarizations of the demagnetized
waveguide. The coupled mode description may be summa-
rized by

Bz_(ﬁfﬂ?ﬁ

CouPLED WAVE THEORY OF THE NORMAL MODES

2

k2. (18)

BB,
1 2 ( 2

It is of note that the phase constants of the normal modes
are degenerate to those of the orthogonal or coupled ones.
It is readily demonstrated that the coupling coefficient (k)
in an infinite medium is given by [28].

k= k. (19)

%

In the waveguide problem considered here it is empirically
constructed in terms of the phase constants of the two
coupled modes and the arbitrary constant C; encountered
in connection with the approximate normal mode problem,
on the basis of a good fit with the exact result as
: 2

k=cﬁf(ﬁe;rﬁ”)n (20)

The tesult obtained in this manner is superimposed on
Figs. 19 and 20.

IX. CONCLUSIONS

The finite element method has been employed to calcu-
late the cutoff numbers of a planar gyromagnetic resonator
with electric and magnetic walls in all combinations. The
solutions to these four problems are all that is necessary to
fully describe the cutoff space of the related elliptical
waveguide with either an electric or a magnetic wall.
Approximate formulations of the split phase constants of
these types of gyromagnetic waveguides are also derived.
The solution associated with the electric wall problem is in
keeping with that of the exact problem.

APPENDIX

The exact solution to the isotropic elliptical planar res-
onator with top and bottom electric walls and a magnetic
sidewall is given below in terms of the derivatives (Ce;,, Se,,)
of odd and even radial Mathieu functions of the first kind
(Ce,,, Se,,) [19], [20], [22]-[24]:

Ce, (£5,9) =0 (A1)

Se,, (£0,4) =0 (A2)
The quantity £, defines the boundary of the resonator and
is related to the eccentricity ¢ by

1
£0=cosh”1(;—)

1
q= Zez“’zﬂo“rfoerz'

for even modes

for odd modes.

(A3a)
and ¢ is given by
(A3b)

R is the radius along the major axis of the circuit and the
other quantities have the usual meaning.
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